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Introduction 
This paper concerns game theory, the mathematical study of games. As the name suggests, a game 

encompasses board and tabletop games. But the reach of game theory is much wider than that, as it also 

used in economics, computer science, biology, and many more fields. Thus, besides being a beautiful field 

of study on its own, game theory also proves useful in applied settings, though more on this will come later. 

Game theory is subdivided into multiple sub-fields. One of those is combinatorial game theory, which is the 

focus of this paper. Among combinatorial games fall, for example, Nim, domineering, and Hackenbush. 

Besides that, though, combinatorial game theory can also be applied to games such as chess, go, and checkers, 

even if they themselves are not combinatorial games. 

 

I have chosen to write and research this topic, because, quite simply, it interests me. For a while now, 

mathematics has been a passion of mine. As such, I have explored a variety of mathematical fields in my 

own time and learned about others at school. However, game theory was a topic that I knew very little about 

and had not yet taken the time to research. So, I decided that this paper was a good opportunity for me to 

learn more about it. Then, looking for a more specific topic that the whole of game theory, I found the sub-

field of combinatorial game theory, which especially intrigued me, because it is used to analyse games such 

as chess, which I tend to enjoy playing because of the strategic aspect. 

 

An important aspect of (combinatorial) game theory is finding ways to get the best move for a player given 

a position. This paper aims to shed light on exactly this aspect of combinatorial games. Hence, the research 

question: How are combinatorial games solved? 

The goal is not, however, to give one way to solve any combinatorial game – however nice that would be – 

as combinatorial games are too varied for such a thing to exist. Instead, the objective is to give multiple 

methods to determine who will win a game given a set of rules and a starting position and to present 

multiple strategies and tactics that may be useful in the determining thereof and otherwise for the reader 

that may want to apply them when playing games in the future. 

To get there, we must first start with the basics: What is Game Theory? 

In this chapter, game theory as a mathematical field of study will be explored and important terminology 

required for the rest of the paper will be explained. 

The second chapter is all about Combinatorial Games: how to describe them and how to analyse them. 

The third chapter explains various Strategies that can be applied to combinatorial games. 

Finally, the fourth chapter addresses Solving Methods. First though, will be given a definition of what a solved 

game even is and what solving a game means. And then a variety of methods that can and have been used 

to solve combinatorial games are presented. 

 

This paper is a literary study of combinatorial game theory. A variety of books and papers on the topic have 

been collected and were used to gather the information and knowledge required to write this text. 

 

The reading of this paper requires minimal mathematical knowledge, – a high school level understanding 

should be plenty, – though a good intuition or reasoning when it comes to mathematics is certainly useful, 

but again, likely not required. 

 

Two indices and an appendix are included at the end of the paper. Index A lists the important terms in 

alphabetical order and also notes on what page(s) they are explained. Index B lists (non-trivial) symbols, 

sectioned by type and then by appearance. For each symbol, as short description as well as the page number 

where it is first used/explained are noted. As this paper is about game theory, some games are used as 

examples for certain topics. Appendix: Rulesets is a collection of rulesets for all games that are used1 in the 

paper. Keep in mind that most, if not all, of the games in the appendix have variants. Unless such a variant 

is used in the paper, and is not explained when it is used, it is unlikely that the rules of the variant can be 

found in the appendix.  

 
1 Games that are merely mentioned are not included in the appendix. 
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1. What is Game Theory? 
 

Game theory is the mathematical study of interactive situations, called games. That is to say, situations 

involving multiple parties called players, that compete or cooperate in a way that affects one another. 

(Bonanno, 2018; Osborne, 2000; Peters, 2015) 

As the name suggests, games such as chess, tic tac toe, and poker, belong in this field, but the study of games 

has much wider applications. So is game theory highly applicable in economics (see, for example, 

Samuelson, 2016), but also finds use in many other fields, such as politics (see, for example, Brams, 2003), 

computer science (see, for example, Apt et al., 2011), biology (see, for example, McNamara, Leimar, 2020), 

and linguistics (see, for example, Jaeger, 2008). 

What could be considered a game is so broad, even, that game theoretic situations can be recognized in 

works as early as the Bible2, the Talmud3, and The Art of War by Sun Tzu, over 2000 years ago. Among the 

first formal works on game theory, however, were Zermelo on Zermelo’s theorem (Zermelo, 1913) and Von 

Neumann on the Minimax theorem for zero-sum games (Von Neumann, 1928), the latter work being the 

basis for the book Theory of Games and Economic Behavior (Von Neumann, Morgenstern, 1944), which is 

considered the breakthrough or start of game theory as a mathematical discipline. In the following decades, 

game theory was mostly developed in the domain of mathematics, by mathematicians counted among 

whom are Nash, Shapley, and Bondareva. By then game theory had also become a major influence on 

economic branches and later also many other fields. In 1994, mathematicians Nash, Harsanyi, and Selten 

won the Nobel Prize in Economic Sciences for their work in game theory. This same prize has since been 

awarded for achievements in or related to game theory a number more times: in 1996 to Mirrlees and 

Vickrey; in 1998 to Sen; in 2001 to Akerlof, Spence, and Stiglitz; in 2005 to Aumann and Schelling; in 2007 

to Hurwicz, Maskin, and Myerson; and most recently in 2012 to Roth and Shapley. (Bonanno, 2018; Osborne, 

2000; Peters, 2015) 

 

1.1. A dip into Set Theory 
A set is a collection of items called elements. These elements can be anything from vehicles, to animals, to 

fruits, and even ‘nothingness’. In the study of sets, though, sets usually contain numbers or other sets. 

The notation for a set is as follows:  

 𝐴 = {𝑒𝑙𝑒𝑚𝑒𝑛𝑡 1, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 2, 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 3, … , 𝑒𝑙𝑒𝑚𝑒𝑛𝑡 𝑛} 

This means that A is a set that contains elements 1 through n (everything that is within the curly brackets). 

In a set, the order of elements does not matter, so 

 {1,2,3} = {3,1,2}, 

and neither does how often an element appears matter, meaning that 

 {1,1,1,1,1,1,1,1,1,2,2,2,2} = {1,2}. 

 

This notation for sets is useful when you don’t have too many elements, but some sets contain a very large 

amounts or even an infinite number of elements. For such cases, the following notation might be easier to 

work with: 

 𝐵 = {𝓍 | 𝓎} 

Here, 𝐵 is the set of all elements 𝓍, for which condition 𝓎 is true. Left of the vertical bar, one might also 

denote what kind of element 𝓍 is. 

For example: 

 𝐶 = {𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠 𝓍 | 𝓍 𝑖𝑠 𝑒𝑣𝑒𝑛}4 

is read as “C is the set of all integers 𝓍, such that 𝓍 is even.” “integers 𝓍” tells us that we are only looking at 

integer numbers and the condition that must be met is that 𝓍 is even. So, if an integer 𝓍 is even, then it is an 

element of the set C. 

Other examples of sets with this notation are: 

 𝑃 = {𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝑝 | 𝑝 𝑖𝑠 𝑝𝑟𝑖𝑚𝑒}, is the set of all prime numbers, 

 𝐷 =  {𝑠𝑒𝑡𝑠 𝑋 | 𝑋 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 3 𝑒𝑙𝑒𝑚𝑒𝑛𝑡𝑠}, is the set of all sets that contain three elements, and 

 
2 1 Kings 3:26 
3 Ketubod 93 
4 Integers, also “whole numbers”, are all numbers without a decimal part. E.g. -314, 0, and 271. 
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 𝐸 = {𝑛𝑢𝑚𝑏𝑒𝑟𝑠 𝓍 | 𝓍 𝑖𝑠 𝑑𝑖𝑣𝑖𝑠𝑖𝑏𝑙𝑒 𝑏𝑦 1931}, is the set of all integers that are divisible by 1931. 

This can also be done with more mathematically rigorous notation, which looks thusly: 

 𝐸 =  {𝓍 ∈ 𝑍 |
𝓍

1931
∈ 𝑍}, 

read as: E is the set of all integers 𝓍, such that 𝓍 divided by 1931 is an integer. This is the same as the set of 

all integers that are divisible by 1931. 

 

Two important symbols in set theory are the symbol for set membership operation (∈) and the symbol for 

the union of sets (∪). 

 

The set membership operation is used in the following ways: 

𝓍 ∈ {1,2,3} or 𝓎 ∈ 𝐴. 

The first example means that 𝓍 is an element in the set of the numbers 1, 2, and 3 (so it is one of them) and 

the second example means that 𝓎 is an element of the set A. On the other hand, 

 𝓏 ∉ 𝐵 

means that 𝓏 is not an element of the set B. 

For example,  

if 𝐹 = {−4,
3

8
, 2,18}, then 2 ∈ 𝐹, but −11 ∉ 𝐹. 

 

The union of two sets is the set of all elements that are in either (or both) of the sets. The notation is as 

follows: 

 𝑋 = 𝐴 ∪ 𝐵, where X, A, and B are sets. 

As an example, if 𝐴 = {0,2,4,6,8} and 𝐵 = {1,4,9,16,25}, then 𝐴 ∪ 𝐵 = {0,1,2,4,6,8,9,16,25}. 

 

Though not exclusive to set theory, another symbol that will be of use is :=, which is used like 

𝓍: = 𝐸, 

and reads as “𝓍 is defined to be E” or “let 𝓍 equal E”. 

 

1.2. Games 
In the study of games, there are a variety of attributes that may or may not apply to a game. Likewise, there 

exist many game types. What follow are some important terms and types of games. 

 

1.2.1. Terminology of Games 

Competitive games 
A game is (strictly) competitive when the game’s players’ interests are opposed to each other (Osborne, 

2000). Games in which one player’s win means a loss for all other players are competitive games. 

 

Cooperative games 
In a cooperative game players can communicate with each other to form coalitions and make binding 

agreements. Real-life situations such as international alliances and treaties, and voting behaviour have been 

studied as cooperative games. (Osborne, 2000; Peters, 2015)  

 

Evolutionary games 
In an evolutionary game, players are representatives from an evolving population (e.g. animals). The 

behaviour of an individual is based on the behaviour of their parent(s), possibly with a slight mutation. The 

study of evolutionary games first came about in biology, but has since also been applied to the study of 

human behaviour and other topics. (Osborne, 2000; Peters, 2015) 

 

Bargaining games 
In a bargaining game, (usually) two players have to make an agreement on choosing one from a selection of 

options. The study of bargaining games has two main sub-fields, the first being the cooperative approach, 

which tries to maximize the total gain for all players, and the second is the competitive approach, which 

tries to maximize the gain for a single player. (Peters, 2015)   
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One-shot 
In a one-shot game, players make only a single, simultaneous move (Peters, 2015). Flipping a coin and 

betting on the result is an example of a one-shot game. 

 

Repeated games 
In a repeated game, players play multiple one-shot games against each other. During any individual game of 

such a repeated game, the players have the knowledge of any previous games, and will either expect or 

know that they will play more games after the current one. (Ross, 2023) 

 

Extensive form 
In a game in extensive form, there are finitely many players (usually two), who make moves sequentially 

instead of simultaneously. A game in extensive from can (and usually does) have players make more than 

one move over the course of the game. (Bonanno, 2018; Peters, 2015) 

 

Finite 
A game is finite when the game will always end after a finite number of moves, each player has a finite 

number of options, and there are a finite number of players (Albert et al, 2007; Peters, 2015). Finite games 

include Scrabble, connect four, and chess, as their rules always force the games to have a finite number of 

moves. 

 

Perfect information and imperfect information 
A game has perfect information if and only if all players have access to all information relevant to the game. 

This includes the rules of the game, what possible moves either player could make, what the result of those 

moves would be, and any preceding moves that may have happened. (Bonanno, 2018) 

Logically follows that a game with imperfect information has some information that players do not have 

access to.  

Any game involving chance or randomness has imperfect information, since neither player can know the 

outcome of a random decision. Any game where players make moves at the same time also has imperfect 

information, because players cannot know for certain beforehand what move the other player(s) will make. 

In games such as Nim or tic tac toe, however, all players can know at all times every move that has been 

made, as well as the outcome of every move that can be made in the future. And thus, these games do have 

perfect information.  

 

Payoff 
The payoff of a game, for a player, is the value that player gains (or loses) after having played the game. The 

payoff for each player can be different. 

 

Strategies 
A strategy is a planned sequence of moves to play a full game (Peters, 2015). In a one-shot game, a strategy 

consists of only one move, but in a game in extensive form or in a repeated game, a strategy consists of many 

moves, which may depend on the moves made by other players. 

 

Options 
Given a position of a game, if player 1 may make a move, then she will have some number of choices she can 

make. All possible positions that can come fourth from these choices are the player 1 options. If player 2 

may make a move, then he will similarly have some number of choices he can make, and all positions that 

can come therefrom are player 2 options. The same holds true for any other players. The options are the 

union of the options of all individual players. (Albert et al, 2007) 
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1.2.2. Types of Games 

Zero-sum Games 
Zero-sum games usually refer to finite two-person zero-sum games. 

A finite two-person zero-sum game is a one-shot game in which both players have some number of options 

for their move. The chosen options together determine the payoffs for the players. A zero-sum game has the 

property that the payoff of player 1 is the opposite of the payoff of player 2, making the sum of the payoffs 

0. The options and the corresponding payoffs can be summarized in a matrix5. Hence, these games are also 

called matrix games (Peters, 2015) 

 

In the game matching pennies, two players each have a coin which they simultaneously throw and then 

reveal. If both coins show the same side (heads and heads, or tails and tails), then player 1 gets player 2’s 

coin, for a payoff of 1 (coin). If the two coins show different sides (heads and tails, or tails and heads), then 

player 1 gives their coin to player 2, for a payoff of -1.  

The payoff matrix for matching pennies look as follows: 

 

 Heads Tails 
Heads 

(
1   −1   

  −1   1
) 

 
Tails 

where player 1 “chooses” a row i, player 2 “chooses” a column j, the entry of row i and column j is the payoff 

for player 1 (which is the number of coins gained), and the payoff for player 2 is −(𝑝𝑎𝑦𝑜𝑓𝑓 𝑝𝑙𝑎𝑦𝑒𝑟 1). 

 

Nonzero-sum Games 
Nonzero-sum games usually refer to finite two-person games.  

A nonzero-sum game is the same as a zero-sum game, except that the sum of the players’ payoffs does not 

have to equal zero. This means that a finite two-person game needs two payoff matrices: one for player 1 

and one for player 2, causing such games to also be called bimatrix games. Instead of writing two separate 

matrices, however, usually these matrices are written as one matrix with two numbers in each entry. (Peters, 

2015) 

 

In the prisoner’s dilemma, two criminals committed a crime together and have been arrested. They are 

interrogated separately, without any way to communicate with one another. The police admit they have no 

actual proof the criminals committed the crime, but are planning to sentence both prisoners for 1 year on 

a lesser charge. However, the police also tell both prisoners that if one of them confesses (C) and the other 

prisoner stays silent (S), then the prisoner that confessed will be set free, while the prisoner that stayed 

silent has to serve 5 years in prison. If both prisoners confess, however, they will each serve three years. 

This can be summarized in the following payoff matrix: 

 

  S C 
S 

(
1,1 5,0
0,5 3,3

) 
C 

Prisoner 1 (player 1) chooses a row i, prisoner 2 (player 2) chooses a column j, the left number in the entry 

of row i and column j is the payoff for prisoner 1 (the number of years she will serve in prison), and the 

right number of the same entry is the payoff for prisoner 2. 

 

Since nonzero-sum games do not disallow for the sum of the players’ payoffs to be zero, each zero-sum 

game is a special case of a nonzero-sum game.  

The zero-sum game matching pennies, can also be summarized as a nonzero-sum game with the following 

payoff matrix: 

 

 

 

 
5 Since the payoff of player 2 is the opposite of the payoff of player 1, only the payoff of player 1 is needed. 
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 Heads Tails 
Heads 

(
1, −1   −1,1  

  −1,1 1, −1
) 

 
Tails 

with the left number of each entry being the payoff for player 1 and the right number being the payoff for 

player 2. 

 

Finite Extensive Form Games 
Finite extensive form games have players move sequentially, and they may each make multiple moves if the 

game allows it. Additionally, there may only be a finite number of players, total moves in the game, and 

options per move. Finite extensive form games are best described by a game tree, which shows whose move 

it is and what a player’s information is have when that player must make a move. (Peters, 2015) 

 

In the battle of the sexes a man and a woman want to go out together. They had decided to go to either a 

football match (F) or a ballet performance (B) but forgot to agree which they would go to. They have no way 

to communicate with each other, but must decide which to go to. The man would like to go to the football 

match and the woman wants to see the ballet performance, but they both prioritize being together. 

This is a nonzero-sum game, but can be made into a finite extensive form game (called the sequential battle 

of the sexes), if we assume the man decides first and the woman chooses after that (or vice versa). This 

results in the following game tree: 

 

 

From this game tree can be seen that, if the man chooses to go to the football match, the woman can choose 

to do the same, resulting in a payoff of 2 (which could represent the amount of enjoyment) for the man and 

a payoff of 1 for the woman, if the man chooses to go to the ballet performance and the woman does the 

same, then the man gets a payoff of 1 and the woman a payoff of 2, and if the woman chooses the option the 

man did not choose, then they will both get a payoff of 0. 

 

Combinatorial Games 
Combinatorial games are very similar to finite extensive form games. But their major difference is that a 

combinatorial game must have perfect information, where a finite extensive form game does not (but can). 

 

The sequential battle of the sexes as described previously could be made a combinatorial game if the woman 

got to know what the man’s choice was before deciding for herself where to go to. 

 

This paper’s analysis on how to solve games using game theory focusses specifically on combinatorial 

games, so a more extensive and formal definition will follow in the next chapter. 
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1.2.3. The Players 
When analysing a (combinatorial) game with two players, the players are usually called Left (or L) and Right 

(or R). There are, however, also other names that are given to the players: 

 

Left Right 

Louise Richard 
Positive Negative 
Black White 
Blue Red 

Vertical Horizontal 
Female Male 

(Albert et al, 2007) 

 

In this paper we will refer to the players as Left and Right and with female and male pronouns respectively, 

unless a game already has names for the players, such as White and Black in chess, and X and O in tic-tac-

toe, in which case those may be used instead. 

 

There are also games that have a neutral colour. Standard neutral colours are green (in a game between 

blue and red) and grey (in a game between black and white). (Albert et al, 2007)  

 

When colours are needed to visualize a game, this paper will use a dark grey for Left, a light grey for Right, 

and no colour (white/the background) as the neutral colour. 
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2. Combinatorial Games 
 

A combinatorial game has two players who sequentially make moves. The game continues until the current 

player has no legal moves they can make. Under normal play, the last player to make a move wins. Under 

misère play, the last player to make a move loses. A combinatorial always has perfect information. This paper 

will mostly focus on the more common finite combinatorial games, though being finite is not a requirement 

for combinatorial games. (Albert et al, 2007)  

Continuing, a game will be assumed to be under normal play, unless stated otherwise. 

Examples of combinatorial games are domineering, hex, and Nim. 

There also exist games that, though they fall outside the definition of a combinatorial game, can still be 

studied with combinatorial game theory. Examples are dots and boxes, where a player may sometimes make 

two moves in a row, tic-tac-toe, which contains draws (meaning there is not always a winner), and go, since 

the winner is based on the player that has the most pieces regardless of who played last. However, some 

sources do call games like these combinatorial games as well. 

 

2.1. Positions and Game Trees 

2.1.1. Positions 
A game or a position of a game is defined by its options: 𝐺 =  {𝒢𝐿|𝒢𝑅}, with 𝒢L and 𝒢R being the sets of the 

options of Left and Right respectively. (Albert et al, 2007) 

 

Consider a game of connect three6 on a 3 by 3 grid: 

 

 
 

The game would be defined as the following set:7  

 

 = { , , | , , } 
 

Note that each of these options each also have some options that define them. The game could therefore 

also be defined with the options of some or all of the options, for example: 

 

  = {  ,  ,{  ,  ,  |  ,  ,

}| , , } 
 

When describing a game by its options or game tree, – which the next section will introduce, – two or more 

consecutive moves for one player are often shown (in the case of this example, two consecutive Left moves). 

Though it may seem wrong to do this, as a player may never make two moves in a row in a combinatorial 

game, doing it this way is useful when a game can be decomposed into several subgames and lets us analyse 

the options of a game as games of their own, which helps with the analysis of the full game. (Albert et al, 

2007)  

 
6 Connect three is not a combinatorial game but works for the example. 
7 Even though the Left options and Right options are sets, the curly brackets are usually omitted. 
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2.1.2. Game Trees 
A game can also be described by a game tree. A game tree is defined by its nodes and edges. Nodes are points 

where a player must make a decision and edges are actions of a player. The upper node or root of the tree 

is the start of the game (or position), where the first player chooses an option (Peters, 2015). The bottom 

nodes or leaves are the end positions of a game, where neither player can make a move (Albert et al, 2007). 

 

The edges pointing down and to the left from a node together form the Left options and the edges pointing 

down and to the right form the Right options. A game tree may show the options of a position by listing only 

the options themselves, or also listing options of (some of) those options, or by showing the full tree, like 

with the definition of a game. (Albert et al, 2007) 

 

A game tree of the 3 by 3 connect three game may then look like: 

 

 
 

Or like: 

 

 
 

2.2. Outcome Classes 

2.2.1. Fundamental Theorem of Combinatoric Games 
“Fix a game G played between Albert and Bertha, with Albert moving first. Either Albert can force a win moving 

first, or Bertha can force a win moving second, but not both.” (Albert et al, 2007) 

 

This theorem holds, because any end position is a win for either Albert or Bertha, and a loss for the other 

player. This means that in a position before one of these, the current player can win if an end position that 

is a win for them can be reached. If no such position exists, then the previous player wins. Going one move 
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back, the then current player can force a win if a move of theirs forces the next player to make a losing move, 

and if no such move exists, then the previous player can win. Extrapolating backwards, the same is true for 

all positions of the game, meaning that, from the initial position, it must be true that Albert can force a win 

moving first, or Bertha can force a win moving second, but not both. 

 

Given the fundamental theorem of combinatoric games, perfect play of a player means that that player 

employs a winning strategy, which is a set of moves that will guarantee the player a win, if they have one. If 

a player has no winning strategy, playing perfectly means making any move. (Albert et al, 2007). 

 

2.2.2. Outcome Classes 
Using the fundamental theorem of combinatoric games, there are four possibilities that arise when a game 

G is fixed, with either Left as the first to move or Right as the first to move. These are the outcome classes: 

 

Class Name Definition 

𝒩 fuzzy The next player to play (regardless of if it is Left or Right) can force a win 
𝒫 zero The previous player to play (regardless of if it is Left or Right) can force a win 
ℒ positive Left can force a win (regardless of whether Left or Right moves first) 
ℛ negative Right can force a win (regardless of whether Left or Right moves first) 

 

Another representation of the outcome classes is: 

 

Outcome Classes 
Right moves first 

Right wins Left wins 

Left moves first 
Left wins 𝒩 ℒ 
Right wins ℛ 𝒫 

(Albert et al, 2007) 

 

Given the outcome class of its options, the outcome class of a position or game can be determined as is 

shown in the following table, where GL is a left option and GR is a right option: 

 

Outcome Classes Some GR ∈ ℛ ∪ 𝒫 All GR ∈ ℒ ∪ 𝒩 

Some GL ∈ ℒ ∪ 𝒫 𝒩 ℒ 
All GL ∈ ℛ ∪ 𝒩 ℛ 𝒫 

(Albert et al, 2007) 

 

Consider that, in normal play, the last player to make a move wins. For the resulting position 𝐺 ∈ 𝒫 must 

then be true. In a game tree, these positions are the leaves of the tree. With this knowledge, it is possible to 

recursively determine the outcome class of every position of a game. 

 

For example, take the following game of domineering and its game tree: 

 

 
 

Replacing all leaves with the zero outcome class gives: 
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And with this, the rest of the tree’s outcome classes can be determined. This is done by looking at the Left 

and Right options of a position, and then looking at the third table for outcome classes. Since the leaves are 

all the zero outcome class, the positions leading to only leaves can have their outcome class found. For 

example, take this position (underlined):  

 

 
 

Looking at the position’s Left option(s), we can see that it falls under “Some GL ∈ ℒ ∪ 𝒫” (because (at least) 

one Left option has the ℒ or 𝒫 outcome class), from the table. Likewise, we can tell that the Right option(s) 

fall under “Some GR ∈ ℛ ∪ 𝒫” (because (at least) one Right option has the ℛ or 𝒫 outcome class). Taking 

that row and that column, we find that the position’s outcome class is 𝒩, or fuzzy. 

 

Then doing the same for all other positions, working backwards, the outcome class of the game itself can 

be ascertained: 

 

 
 

This shows that the game of domineering can be won by whomever plays second, regardless of whether that 

is Left or Right. 

 

2.2.3. Impartial and Partizan Games 
In some games, such as in Nim, it makes no difference whether Left moves first or Right; the Left options 

and Right options are the same: 𝒢𝐿 = 𝒢𝑅 . Such games are called impartial. For other games, such as hex, it 

does matter which player moves first, as the Left options and Right options are not the same: 𝒢𝐿 ≠ 𝒢𝑅 . 

Those games are called partizan. (Albert et al, 2007) 

 

This means that an impartial game must have the zero outcome class or the fuzzy outcome class, while a 

partizan game can have all four outcome classes. 
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Though what follows in this paper can be applied to impartial games, it sees more use in analysis of partizan 

games. Because impartial games can only have the zero of fuzzy outcome classes, there is a different way 

that those games can be analysed that does not work for partizan games. 

 

2.3. Games and their Values 

2.3.1. More on Outcome Classes 
To further be able to describe games, it is useful to be able to assign each game a value. 

 

The simplest possible game is 𝐺 = {|}, where neither Left nor Right have any options. It is trivial to see that 

whoever starts the game loses, as the first player to move has no legal moves. This came is called zero and 

is written as 0 ≔ {|}. With this game defined, other games can be constructed, such as 𝐺 = {0| }. This game 

is a win for Left, as, if she moves first, she chooses to play 0, after which Right has no legal moves, and if 

Right moves first, he has no legal moves and loses. Similarly, 𝐺 = { |0} is a win for Right. Another game is 

∗∶=  {0|0} which was given its own symbol, and is named star, which is a win for the first player, regardless 

of who that is. (Blom, 2021) 

 

With these four games, the outcome classes can be described in a new way: 

If 𝐺 = 0, the second (or previous) player to move wins. This is outcome class 𝒫. 

If 𝐺 > 0, Left can force a win. This is outcome class ℒ. 

If 𝐺 < 0, Right can force a win. This is outcome class ℛ. And 

 if 𝐺 || 0, the first (or next) player to move wins. This is outcome class 𝒩. (e.g. 𝐺 =∗) 

(Blom, 2021) 

 

2.3.2. Game Sums 
Many games can be divided into independent components, which can each be viewed as their own game. 

Since these components are independent, the full game can be described as a sum of its components. (Albert 

et al, 2007) 

 

This leads to the definition of game sums: 

“The direct sum of two games G and H is written G+H, given by 𝐺 + 𝐻 ≔ {𝒢𝐿 + 𝐻, 𝐺 + ℋ𝐿|𝒢𝑅 + 𝐻, 𝐺 + ℋ𝑅}.”8 

(Blom, 2021) 

 

In a game sum of positions, the player to move can move in any of the summands and can treat that as an 

individual game, during play a new (sub-)position may be able to be written as another game sum, and the 

last player to move in the final summand still wins. (Albert et al, 2007) 

 

Take the following game of Red-Blue Hackenbush and its game sum as an example: 

 

= +  
 

 

 A game can also have a negative: −𝐺 ≔ {−𝒢𝑅| − 𝒢𝐿}, and corresponds to swapping the players. The sum of 

a game and its negative is always zero, 𝐺 + (−𝐺) = 0. This is not too difficult to see, as, if the first player 

plays to a position H in G, then the second player can move to position –H in –G. If the first player moves in 

–G instead, the second player just moves in G. Player 2 can keep this up until player 1 has no moves left, 

thus winning. One more property of the negative of a game, is that the negative of the negative of a game is 

 
8 Where ℋL and ℋR are the Left and Right options respectively of game H. 
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the same as the original game: −(−𝐺) = 𝐺, as that corresponds to swapping the players twice, which puts 

them back to their original places. (Blom, 2021) 

 

2.3.3. The Value of a Game 
The value of any zero game is 0 and the value for any fuzzy game is the same as that of *. For impartial 

games, this means that for every game G, 𝐺 = 0 ∨ 𝐺 = ∗. Partizan games, however, can take on many more 

values. 

 

Consider the following games of Red-Blue Hackenbush: 

 

  
G1 G2 

 

In G1, Right (who plays Red, shown as light grey) can force a win. This means that 𝐺1 < 0. But how much 

less is it exactly? Well, in G2 two lines for Left (who plays Blue, shown as dark grey) have been added to G1, 

which has turned it into a zero game. So, adding 2 (lines) to 1 (line) for Left, cancels out Right’s 3 (lines). 

And since the value of a game is 𝐺 > 0 if Left can force a win and is 𝐺 < 0 if Right can force a win, a line for 

Left has a value of 1 and a line for Right has a value of –1. Now the value of G2 can be written as 𝐺2 = −3 +

3 = 0, and the value of G1 can be computed also: 𝐺1 = −3 + 1 = −2. 

 

But now take a look at the following games: 

 

   
G3 G4 G5 

 

Again, G3 is a win for Right. However, this game does not fit in with the system of values as described with 

the first set of examples. G4 shows that 𝐺3 > −1, as adding 1 makes it a win for Left, but since G3 is a win for 

Right, −1 < 𝐺3 < 0, and thus G3 must (and by association games in general can) have a non-integer value. 

To find the value of G3, we look at G5, which has two copies of it placed side by side and with a blue line next 

to them. For G5 can be determined that it is a zero game, meaning 𝐺5 = 0. So 2 ∙ 𝐺3 + 1 = 0, which leads to 

the conclusion that 𝐺3 = −
1

2
. (Bartlett, 2006) 
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G6 and G7 below are a few more fractional games. 

 

  
G6 G7 

 

G6 has value 
3

8
, which can be found by adding seven more copies (making 8 total) of G6 as well as 3 lines for 

Right, which makes a zero game. This gives the following equation to solve: 8𝐺6 − 3 = 0, leading to 𝐺6 =
3

8
. 

The value of G7 can be found to equal −
5

4
 in a similar way, and is left as an exercise for the reader to try if 

they want. A useful note to add for G7 is that it is composed of two games, of which the values can be found 

separately, and then summed. 

 

2.4. Viewing Games as Numbers 

2.4.1. Dyadic Rational Numbers 
It has been shown that games can take on integer values and rational values, but it is good to get a better 

grasp of this in a more general situation. 

 

A game where Left has n free moves9 available has a value of n, and a game where Right has n free moves 

has a value of –n. More formally, for any 𝑛 ∈ 𝑍+, the games are defined as: 

 𝑛 ≔ {𝑛 − 1| } 

and for any game –n as the negative of n: 

−𝑛 = { |1 − 𝑛}. 

(Albert et al, 2007) 

 

With the integers defined, we can continue to the dyadic rational numbers. A dyadic rational number (or 

binary rational number), is any number that can be written as a fraction whose denominator is a power of 

2. In short games, that is to say, games with a finite game tree and wherein a position may not be repeated, 

the value of a game will always be a dyadic rational number. (Albert et al, 2007) 

 

An example: we know that G3 from the previous section has a value of 
1

2
. Its options are 

 

={ | } 
 

which is equal to {−1|0}. And since 𝐺3 = −
1

2
, {−1|0} = −

1

2
 must be true. 

 
9 “Free moves” meaning the moves left after subtracting the amount of moves the other player has. 
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More generally, for any odd m and 𝑗 > 0, numbers are defined as: 

 
𝑚

2𝑗 = {
𝑚−1

2𝑗 |
𝑚+1

2𝑗 }. (Albert et al, 2007) 

 

2.4.2. Surreal Numbers 
When expanding scope beyond short games, a game can take on any value that is a surreal number, which 

includes the integers, the reals (so also all rationals), the ordinals, and more. (Albert et al, 2007)  

 

“A surreal number 𝓍 = {𝓍𝐿|𝓍𝑅} is a game whose options are all surreal numbers, with 𝓍𝐿 < 𝓍𝑅  for all 𝓍L 

and 𝓍R.” (Blom, 2021) 

 

All previously constructed numbers fit into this definition, though now many more numbers can be made. 

 

It is time to construct, or at least show how to construct, every surreal number, from the ground up.  

On the zeroth layer of the tree, also called the zeroth day, the game 0 = {|} is found. On the first day the 

games {0| }, { |0}, and ∗ = {0|0} are discovered. The first two are (named) 1 and –1 respectively, but, as 0 ≮

0, * is not a number. On day two, we get the following numbers 2 =  {1| } = {1,0| } = {1, −1| } = {1,0, −1| }, 
1

2
= {0|1} = {−1,0|1} , 0 = { |1} = {−1|1} = {−1| } , −

1

2
= {−1|0} = {−1|0,1} , and −2 = { | − 1} =

{ |0, −1} = { |1, −1} = { |1,0,-1}. (Blom, 2021) 

In {1,0,-1| }, Left would always choose 1 over 0 and –1, as 1 is a win for Left, whereas –1 is a win for right 

and 0 is a “less decisive” win for Left. Similarly, in { |1,0,-1} Right would always choose -1 over 0 and 1. In 

general, all numbers but the largest for Left and all numbers but the smallest for Right may be omitted while 

keeping the value the same. This simplest form of a game is its canonical form. (Albert et al, 2007) 

 

Initially, only the dyadic rational numbers can be made this way. However, in infinite games, and thus games 

with infinitely many positions, all real numbers can be constructed, as well as a few “new” numbers: 

𝜔: = {0,1,2,3, . . . | } , which is a surreal number larger than any real number, and 𝜀: =
1

𝜔
= {0|1,

1

2
,

1

4
, . . . } , 

which is a surreal number closer to zero than any positive real number (while not being equal to 0), but 

also 𝜔 + 1, 2 ∙ 𝜔, 𝜔2, and more. (Blom, 2021) 

One may note that ω and ε seem not to be in their canonical form, but they are. Because they contain 

infinitely many numbers, there is no “largest” number in ω’s Left options and no “smallest” number in ε’s 

Right options, and thus it is not possible to remove “all but the largest/smallest” numbers. The same is true 

for all surreal numbers that are not a dyadic rational number. 

 

Shown below is a (partial) tree of the surreal numbers, including the first few layers fully, positive and 

negative ω and ε, as well as a few other numbers. 
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And to illustrate how ω and ε would look as games, here are games with those values in Red-Blue 

Hackenbush: 

 

  
 1 2 3 ω ω+1 ω+2   

−
1

2
 −

1

4
 −

1

8
 

-ε -ε-1 -ε-2  

 

2.4.3. Comparing Games 
Now we know how to find a game’s value. But to truly be able to compare two games’ values, instead of 

assuming we can as we have done so far, operations for comparisons need to be defined. 

 

For all these comparisons, we will let G and H be games. 

 

First definitions are given to the ≥ and ≤ operations: 

- 𝐺 ≥ 𝐻 ↔ (no 𝐺𝑅 ≤ 𝐻 and 𝐺 ≤ no 𝐻𝐿), or: G is greater than or equal to H if and only if there exists no 

Right option of G that is smaller than or equal to H and there exists no Left option of H that G is smaller 

than. 

- 𝐺 ≤ 𝐻 ↔ 𝐻 ≥ 𝐺, or: G is smaller than or equal to H if and only if H is greater than or equal to G. 

(Conway, 2001) 

 

Now the =, >, and < operations can be defined: 

- 𝐺 = 𝐻 ↔ (𝐺 ≥ 𝐻 𝑎𝑛𝑑 𝐻 ≥ 𝐺), or: G is equal to H if and only if G is greater than or equal to H and H is 

greater than or equal to G. 

- 𝐺 > 𝐻 ↔ (𝐺 ≥ H and H ≱ G), or: G is greater than H if and only if G is greater than or equal to H and H 

is not greater than or equal to G. 

- 𝐺 < 𝐻 ↔ 𝐻 > 𝐺, or: G is less than H is H is greater than G. 

(Conway, 2001) 

 

The next operation is the identity: 

- 𝐺 ≡ 𝐻 ↔ (𝑎𝑙𝑙 𝐺𝐿 ≡ 𝑠𝑜𝑚𝑒 𝐻𝐿  𝑎𝑛𝑑 𝑎𝑙𝑙 𝐺𝑅 ≡ 𝑠𝑜𝑚𝑒 𝐻𝑅 , 𝑎𝑛𝑑 𝑎𝑙𝑙 𝐻𝐿 ≡ 𝑠𝑜𝑚𝑒 𝐺𝐿 𝑎𝑛𝑑 𝑎𝑙𝑙 𝐻𝑅 ≡ 𝑠𝑜𝑚𝑒 𝐺𝑅) , 

or: G is identical to H if and only if all Left options of G are identical to a Left option of H and all Right 

options of G are identical to a Right option of H, and vice versa. 

(Conway, 2001) 

 

The distinction between equality (=) and identity (≡) is necessary, for even if two games are equal, they 

might not be identical. For instance, if 𝐺 = {3,1,0| }  and 𝐻 = {3,2| } , then 𝐺 = 𝐻  as 𝐺 = 4  and 𝐻 = 4 , but 

not all GL have a representative in HL (namely 1 and 0) and not all HL have a representative in GR (namely 

2). That games that are equal may not be identical poses an issue when it comes to certain operations, as, 

even if two games G and H are equal, the result of a function with another game I f(G,I) may not be equal to 
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f(H,I) (Conway, 2001). If we take a number to represent the canonical form of all games with that value, 

then this no longer is an issue. 

 

And the last comparing operations necessary for games: 

- 𝐺 || 𝐻 𝑖𝑓 (𝐺 ≱ 𝐻 𝑎𝑛𝑑 𝐻 ≱ 𝐺), or: G is confused with (or incomparable to) H if G is not greater than or 

equal to H and H is not greater than or equal to G. 

- 𝐺 ⧐ 𝐻 𝑖𝑓 (𝐺 > 𝐻 𝑜𝑟 𝐺 || 𝐻), or: G is greater than or incomparable to H if G is greater than H or G is 

incomparable to H, which is equivalent to 𝐺 ≰ 𝐻. 

- 𝐺 ⧏ 𝐻 𝑖𝑓 (𝐺 < 𝐻 𝑜𝑟 𝐺 || 𝐻), or: G is smaller than or incomparable to H if G is smaller than H or G is 

incomparable to H. 

(Albert et al, 2007) 

 

All of these definitions work inductively. Namely, to see if a comparison of G and H holds or not, we compare 

some of GL, GR, HL, and HR to themselves and to G and H. With inductive proofs, a basis is needed for which 

the property we want to proof is true. However, when going down the chain of induction for these 

definitions, one will always come to the empty set, about which’s elements any statement is true. Thus, no 

basis is required for them. (Conway, 2001) 

 

With these definitions, certain properties about how the numbers work can be proven. The proofs 

themselves will not be given, but the following properties are true. 

Given games 𝓍 = {𝓍𝐿|𝓍𝑅}, 𝓎 = {𝓎𝐿|𝓎𝑅}, and 𝓏 = {𝓏𝐿|𝓏𝑅}, 

0. 𝓍 ≱ 𝓍𝑅; 𝓍𝐿 ≱ 𝓍; 𝓍 ≥ 𝓍; 𝓍 = 𝓍; 

1. If 𝓍 ≥ 𝓎 and 𝓎 ≥ 𝓏, then 𝓍 ≥ 𝓏; 

2. 𝓍𝐿 < 𝓍 < 𝓍𝑅; 

Thus, surreal numbers are totally ordered10. 

3. 𝓍 + 0 ≡ 𝓍; 𝓍 + 𝓎 ≡ 𝓎 + 𝓍; (𝓍 + 𝓎) + 𝓏 = 𝓍 + (𝓎 + 𝓏); 

4. −(𝓍 + 𝓎) = −𝓍 ± 𝓎; −(−𝓍) = 𝓍; 𝓍 + −𝓍 = 0; 

Thus, addition of surreal numbers is commutative and associative. 

5. 𝓎 ≥ 𝓏 ↔ 𝓍 + 𝓎 ≥ 𝓍 + 𝓏; 

6. 0 is a number; if 𝓍 is a number, so is −𝓍; if 𝓍 and 𝓎 are numbers, so is 𝓍+𝓎; 

Thus, surreal numbers form a totally ordered Group under addition11. 

(Conway, 2001) 

 

With that, it turns out the surreal numbers, and thereby games, can be used much like one would use a 

different sets of numbers, such as the reals. 12  

 
10 Meaning that any two surreal numbers can be compared. 
11 Meaning that any two additions of surreal numbers can be compared. 
12  Do note that surreal numbers also work for multiplication, addition, and other operations, which is 

necessary for the statement. However, those are out of the scope of this paper and thus were not discussed. 
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3. Strategies 
In chapter 1, a strategy was defined as a planned sequence of moves to play a full game. A more formal 

definition of a strategy is: “a strategy is a list of actions, exactly one at each information set of that player”. 

(Peters, 2015). 

 

There are a variety of basic strategies that prove useful when solving games, when proving theorems, or 

when trying to improve as a human player. What follows is a non-exhaustive list of such strategies. 

 

3.1. Greedy 
Employing a greedy strategy means choosing the options that maximize or minimize a value of the game 

(Albert et al, 2007). Usually, a player that plays greedily wants to maximize their own value or minimize 

their opponent’s value. 

 

A greedy strategy is easy to implement and is often effective in simple games and still useful in some more 

complex games. A value can be assigned to a position of a game, either by estimating it like is done for chess 

or by having the players accumulating a score over the course of the game. Then calculating what move 

maximizes a player’s score is fairly simple. 

 

3.2. Symmetry 
A player that uses a symmetry strategy effectively copies the strategy of their opponent. If the opponent 

makes a move, then the player using the symmetry strategy mimics the move. (Albert et al, 2007) 

The mimicking move may be a mirrored version of the mimicked move (in chess, for example, there are a 

few openings where Black mirrors the moves made by White), or a rotated version of the move.  

 

Using a symmetry strategy is very strong in the game of Cram. When played on an m x n grid, if m and n are 

even, then the second player can always win by playing the same move as the first player but rotated 180 

degrees. Similarly, if m or n is odd (but not both), then the first player can win by playing in the centre first, 

and then employing the same symmetry strategy. (Albert et al, 2007) 

 

3.3. Change the Game 
Some games are more easily intuited than others. It would then be helpful if an unintuitive game could be 

changed into a more intuitive one. As it turns out, that is sometimes possible, as some games are the same, 

even if they have different rules. (Albert et al, 2007) 

 

An example of this with widespread use in the analysis of impartial games, is that any short impartial game 

is equivalent to a game of Nim. (Conway, 2001) 

 

3.4. Parity 
The parity of a number states whether the number is odd or even. Parity has an intrinsic importance to 

combinatorial games. In normal play the first player wants a game to last an odd number of moves, while 

the second player wants the game to last an even number of moves, as they each win in those situations. 

Thus, the parity of the number of moves of a game determines the winner. (Albert et al, 2007) 

 

In some games, this allows the second player to view the moves of the two players as a pair, as opposed to 

as separate moves, which might give him insights into the game he otherwise would not have gained. 

 

3.5. Give Them Enough Rope 
The Enough Rope Principle says to choose the move that will result in the most complicated position for the 

opponent. Especially when in a losing position, following the principle might turn a loss into a win. (Albert 

et al, 2007) 
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Important to note, though, is that the Enough Rope Principle is usualy only applicable when playing against 

another human, and generally one that is not an expert of the game being played. The point of the principle 

is to confuse the opponent, possibly into making a bad move, and to get more time to analyse the position 

(Albert et al, 2007). 

 

Another implication of the Enough Rope Principle is that, when confused about what move to make in a 

position, simplifying to the point where the opponent is not confused might be harmful. 

 

3.6. Do Not Give Them Any Rope 
Contrary to the Enough Rope Principle, when in a winning position it is a good strategy to simplify the 

position, to not allow the opponent the chance to create a confusing situation. (Albert et al, 2007)  

 

3.7. Strategy Stealing 
Strategy stealing is a technique where a player adopts the opponent’s strategy as their own. (Albert et al, 

2007) 

 

Strategy stealing can be useful to a player if their strategy seems worse than their opponent’s. It is also a 

common solving method, and thus will get more attention in the next chapter. 
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4. Solving Methods 
At last it is time to solve some games. However, we have never defined what it means for a game to be solved, 

so that will be the first order of business. 

 

4.1. Types of Solves 
When speaking of a solved game, there is some aspect of the outcome of the game that is known given the 

rules and starting position. Generally, this means that the winner given perfect play is known. It is not a 

seldom occurrence, however, that this is not all that is meant when a game is said to be solved. Thus, there 

are three definitions for what it means when a game is solved: 

 

- Ultra-weakly solved: Given the initial position, the game’s value is known, 

- Weakly solved: Given the initial position, a strategy to obtain the game’s value is known for both players, 

and 

- Strongly solved: Given any legal position, a strategy to obtain that position’s value is known for both 

players. 

(Allis, 1994) 

 

For a game that is ultra-weakly solved, even though the game’s value – and thus who wins assuming perfect 

play – is known, the sequence of moves that follows perfect play is not (necessarily) known as well. A game 

that is weakly solved has a known strategy for both players that achieves the game’s value, regardless of 

what moves the opponent makes. A strongly solved game has a strategy for both players to play perfectly 

from any legal position. Between these types of solves exists an order. Namely, that any strongly solved game 

is also weakly solved and that any weakly solved game is also ultra-weakly solved. (Allis, 1994) 

 

Now, when speaking of a solved game, we can be more specific. When the specificity is deemed unnecessary 

or is not given by the user of the term, we know that it means that such a game is at least ultra-weakly 

solved. 

 

Having defined what is means for a game to be solved, we can continue to various solving methods. 

 

4.2. The Strategy Stealing Argument 
As mentioned before, strategy stealing is a strategy that can be employed in which the player using the 

technique adopts their opponent’s strategy as their own. 

 

The strategy stealing argument is a method by which, for some games, the winning player can be proven. 

The method uses a proof by contradiction, in which an assumption is made about which player can win, 

which is contradicted, therefore proving that the other player must have a winning strategy. When using 

this method, we never proof what the strategy for the winning player is, making any game solved using the 

strategy stealing argument an ultra-weakly solved game.  

 

To illustrate is a proof regarding the game Hex: 

 

Theorem: The first player wins a game of Hex, assuming perfect play. 

 

Sketch of proof: Assume that player 2 can force a win. Let Alice and Bob play two games. In the first game 

Bob goes first and Alice goes second, and in the second game Alice goes first and Bob goes second. As she 

is player 2 in the first game, Alice has a strategy S with which she can win. In the second game, going first, 

Alice can start by making an arbitrary move, and then continue as though she were player 2, using S. If, on 

a later turn of hers, S requires Alice to colour the hex she coloured as her first move, then Alice can colour 

an empty hex and continue using S from there. Thus, when going first Alice can win also. The assumption 

was that player 2 can force a win. However, following that assumption, both player 1 and player 2 have been 

shown to have a winning strategy. This contradiction means that the assumption must be wrong. Therefore, 

player 1 must have a strategy to always win Hex. (Albert et al, 2007; Karlin, Peres, 2017) 



How are Combinatorial Games Solved?  23 
 

4.3. Top-Down Induction 

4.3.1. Proofs by Induction 
To prove a statement P(n), a “traditional” proof by induction, a base case P(0) or P(1)13 and a general case 

P(k+1) are proven. For the general case, it is assumed that P(k), for some k, holds, which is the induction 

hypothesis, after which the inductive step is taken, where is proven that if P(k) holds, then P(k+1) is also 

true. The base case and inductive step together prove P(n) for all 𝑛 ≥ 0 (if 0 is the base case). (Dobson, 

Slomson, n.d.) 

 

An example: 

 

Theorem: The sum of the first n positive integers equals 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
. 

 

Proof: Let P(n) be the statement 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
.  

(a) Base case: For 𝑛 = 0, 
0(0+1)

2
=

0∙1

2
= 0. Thus, P(0) is true. 

(b) Induction hypothesis: Assume that P(k), where k is some integer, is correct, meaning that  

1 + 2 + 3 + ⋯ + 𝑘 =
𝑘(𝑘+1)

2
. 

(c) Induction step: Now we will show that, if P(k) is correct, P(k+1) is also correct. 

1 + 2 + 3 + ⋯ + 𝑘 + (𝑘 + 1) = (1 + 2 + 3 + ⋯ + 𝑘) + (𝑘 + 1) 

            =
𝑘(𝑘+1)

2
+ (𝑘 + 1), by the induction hypothesis 

            =
𝑘2+𝑘

2
+

2𝑘+2

2
 

            =
𝑘2+3𝑘+2

2
 

            =
(𝑘+1)(𝑘+2)

2
 

            =
(𝑘+1)((𝑘+1)+1)

2
 

So P(k+1) is indeed true. 

 

And thus, we have proven that P(n) is true for all 𝑛 ≥ 0. 

(Dobson, Slomson, n.d.) 

 

4.3.2. Top-Down Induction 
Top-down induction, like “traditional” induction, uses a smaller case to prove something about a larger case. 

However, the method is different: to prove a statement P(n) for all 𝑛 ∈ 𝑁, a proof by top-down induction 

may at any time assume P(k) is true for some 𝑘 < 𝑛. When making such an assumption, “by induction” must 

be written. When the proof is done, a review must be done to make sure any base cases are proven. Two 

perks of top-down induction are (1) that base cases are often not necessary, as they are often vacuously 

true and (2) that it works for any set N and any partial ordering14 <. (Albert et al, 2007)  

 

To illustrate, we will prove the same theorem as we did with “traditional” induction: 

 

Theorem: The sum of the first n positive integers equals 1 + 2 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
. 

 

Proof: Let P(n) be the statement 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
.  

(a) If P(n) is true, then 1 + 2 + 3 + ⋯ + 𝑛 =
𝑛(𝑛+1)

2
 holds. 

1 + 2 + 3 + ⋯ + 𝑛 = (1 + 2 + 3 + ⋯ + 𝑛 − 1) + 𝑛 

    =
(𝑛−1)((𝑛−1)+1)

2
+ 𝑛, by induction 

 
13 In proofs by induction, the base case is usually n=0 or n=1. 
14 Meaning that there are elements in N that can be compared, such that one precedes the other. 
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    =
(𝑛−1)𝑛

2
+

2𝑛

2
 

    =
𝑛2−𝑛+2𝑛

2
 

    =
𝑛2+𝑛

2
 

    =
𝑛(𝑛+1)

2
 

And the base case, 𝑛 = 0, is also holds, as 
0(0+1)

2
= 0. 

 

Thus, for any 𝑛 ≥ 0, P(n) is true. 

(Albert et al, 2007) 

 

Hopefully the example made the workings of top-down induction clear, for it is the type of induction used 

most often in combinatorial game theory, and can (help) solve games, as we will now see: 

 

There is a variant on the game Nim, where there is only one heap of n counters, but where a player can take 

a minimum of one and a maximum of 10 counters on their turn. This variant can be solved with top-down 

induction. 

 

Theorem: The second player wins if and only if 𝑛 𝑚𝑜𝑑 11 = 0. 

 

Proof: 

(a) If 𝑛 𝑚𝑜𝑑 11 = 0 , then any legal move leaves a heap that is not equivalent to 0, which loses by 

induction. 

(b) If 𝑛 𝑚𝑜𝑑 11 ≠ 0 , but instead 𝑛 𝑚𝑜𝑑 11 = 𝑎 , then player 1 can take a counters, leaving 𝑛 − 𝑎 

counters, which modulo 11 will be 0. Continuing, player 1 can use the strategy named in (a), acting 

as though they were player 2, and win. 

 

No base case is required for this proof, as the base case would be 𝑛 = 0, for which any statement about “all 

legal moves” is vacuously true. 

 

So, if 𝑛 𝑚𝑜𝑑 11 = 0, then player 2 has a winning strategy, but if 𝑛 𝑚𝑜𝑑 11 ≠ 0, then player 1 has a winning 

strategy. In other words, the second player wins if and only if 𝑛 𝑚𝑜𝑑 11 = 0. 

(Albert et al, 2007) 

 

4.4. The Minimax Algorithm 
The minimax algorithm computes computes the best move in a game or position. The algorithm starts by 

looking at the leaves of the game’s tree, which it calculates the values of. Then, recursively, going backwards, 

it makes the rest of the tree. A game tree made by the minimax algorithm is different from a normal game 

tree, as it only considers the options of the player whose turn it is and not the options of both players. Each 

position is also given a value that is determined by finding which of the position’s options gives the 

maximum value if the position is player 1’s turn and the minimum value if the turn is player 2’s.  By looking 

at the whole game tree this way, the best move of any position of a game is found. This makes a game solved 

with the minimax algorithm a strongly solved game. (Russel, Norvig, 2010) 

 

The minimax algorithm finds use, for example, in chess engines/AI. However, the game of chess is much too 

large in the number of options to calculate the full game tree.  Instead, a chess engine that uses the minimax 

algorithm searches all moves up to some depth (number of moves). Then the engine evaluates the leaves, 

which are unlikely to be final positions of the game, based on various factors. These are the values used for 

the rest of the minimax algorithm. (AI Chess Algorithms, 2003) 
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4.5. Retrograde Analysis 
Retrograde analysis approaches a game not from the initial position but from the final ones. Starting with 

the final positions, a computer using retrograde analysis would calculate what previous moves there are, 

and that way construct a game tree in reverse. Doing so, the outcome of any sequence of moves can be 

known. (Neeleman, 2015; Van den Herik et al, 2001)  

 

Retrograde analysis is used a lot for the construction of endgame databases for games too complicated to 

fully solve using the method. For example, retrograde analysis was one of two solving methods used for the 

game fanorona. (Schadd et al, n.d.) 

 

4.6. Decomposition Search 
The decomposition search method finds the best move in a game or position, like the minimax algorithm, 

but can handle much larger problems than it, as decomposition search uses concepts from combinatorial 

game theory to improve the search. (Muller, n.d.) 

 

Decomposition search uses a four-step algorithm to determine the best move in a game G, like so (from 

Muller, n.d.): 

 

Let G be a game that can be written as the sum of its subgames: 𝐺 = 𝐺1 + ⋯ + 𝐺𝑛
15 and let the combinatorial 

evaluation of G be 𝐶(𝐺). 

 

4.6.1. Game Decomposition and Subgame Identification 
The first step is to decompose G into its subgames, in other words, to find the sum of subgames 𝐺 = 𝐺1 +

⋯ + 𝐺𝑛 . How and if this can be done depends on the game being analysed. 

 

4.6.2. Local Combinatorial Game Search (LCGS) 
LGCS makes a game tree of relevant moves individually for all subgames. A tree made by LCGS is different 

from one made by a minimax algorithm, as such an algorithm only looks at the options of the player whose 

turn it is in a position, whereas LCGS considers all options, like how game trees were defined in chapter 2. 

 

This means that LCGS must generate every legal move for every option for every subgame for both players. 

Unless, that is, an option can be pruned or is a terminal position.  

An option can be pruned, meaning that it and its branches are removed from the tree, if it is equivalent to 

another position or if it is dominated (there exists a move with a greater value if it is Left’s move, or a move 

with lesser value if it is Right’s move) by another position, which do not help in finding the best move. LCGS 

defines a terminal position as a position with (1) no legal moves; (2) no good move, the position is seen as 

constant; or (3) the value of the position is already known. In cases 1 and 2, the positions are evaluated and 

given a local score. In the third case, which might arise for example if the position is a transposition16 of 

another sequence of moves, the local score of the position is already known, and thus LCGS needs not look 

further into the tree. 

 

4.6.3. Local Evaluation 
Local evaluation calculates the value of a game given the values of its game tree’s leaves. Let the players be 

Black and White, where a positive value is good for Black, and name the moves for Black from local position 

p 𝑏1, … , 𝑏𝑛 and name the moves for White 𝑤1, … , 𝑤𝑛. These are the leaves of p’s game tree, of which the 

values have been calculated by LCGS. The evaluation of p is 

𝐶(𝑝) = {𝐶(𝑏1), … , 𝐶(𝑏𝑛)|𝐶(𝑤1), … , 𝐶(𝑤𝑛)}, 

which can be reduced to the canonical form. 

This calculation can be repeated from the leaves to the root, evaluating each node in the game tree for each 

subgame. 

 
15 Note that this only states that the subgames exist. To make use of them, they must be calculated first. 
16 If two or more different sequences of moves result in the same position, they are transpositions. 
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4.6.4. Sum Game Play 
The final step is to select what move to play. This is done by calculating the incentives, which determine 

how much a player gains by playing that move, in all subgames. The optimal move is defined as the move 

with an incentive that dominates all others. It is possible, though, that there is no one incentive that 

dominates all others, in which case the optimal move is found by a more complex procedure. 
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Conclusion 
It turns out that the question “How are combinatorial games solved?” has multiple answers. 

 

In chapter 1 we discovered what game theory is, and some important terminology that is important for the 

mathematical field: competitive, cooperative, evolutionary, and bargaining games; one-shot, repeated, and 

extensive form games; the attributes finite and (im)perfect information; and payoff, strategies, and options, 

and a few game types: zero-sum games, nonzero-sum games, finite extensive form games, and a brief look at 

combinatorial games, while also learning about a bit of set theory. 

 

Then in chapter 2, we defined what a combinatorial game, namely a set of its options: 𝐺 =  {𝒢𝐿|𝒢𝑅}, and 

how to express is as a set of options or as a game tree. Furthermore, with help of fundamental theorem of 

combinatoric games, we defined the outcome classes 𝒩 (fuzzy), 𝒫 (zero), ℒ (positive), and ℛ (negative), 

which are the first glimpse into solving a game works. Building from that, we found a way to give values to 

games and to use these as surreal numbers with which we can do arithmetic such as adding a subtracting. 

And with the arithmetic for the surreal numbers, we defined ways to compare them, again getting closer to 

an answer for the research question. 

 

In chapter 3, some basic strategies for combinatorial games were discussed: the greedy strategy, the 

symmetry strategy, changing the game to another, using parity, giving the opponent enough or no rope, and 

strategy stealing.  

 

At last, in chapter 4, we got to a few solving methods using knowledge from the previous two chapters. But 

not before defining what a “solved game” is, instead of going by a vague understanding. That way, we found 

that there are three ways in which a game can be solved: ultra-weakly, weakly, or strongly. And then were 

the solving methods. First was the strategy stealing argument, which can ultra-weakly solve a game by using 

the strategy stealing technique, as we showed with Hex. Next was top-down induction, using a specific type 

of mathematical induction to determine who should win, as showed with the example with a Nim variant 

which we solved ultra-weakly. The minimax algorithm and retrograde analysis are not specific for 

combinatorial game theory, but show very common techniques to strongly solve games and thus are 

important. Finally, we explained the decomposition search method and its four-step algorithm to strongly 

solve games in a, at ground level, similar way to the minimax algorithm, but which uses a variety of concepts 

from combinatorial game theory to improve the process. 

 

To conclude the paper, the answers to “How are combinatorial games solved?” that we have found are: by 

using the strategy stealing argument, by using top-down induction, by using the minimax algorithm, by using 

the retrograde algorithm, and by using decomposition search.   
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Appendix: Rulesets 
 

Cram 
Cram is a variant of domineering. See domineering for the rules. 

 

The difference between cram and domineering, is that in cram both players may place their dominoes in a 

vertical or horizontal orientation. 

 

Connect Four 
Connect four is played on a grid of (as is the standard) seven columns and six rows: 

 

 
 

Two players, Yellow (dark grey) and Red (light grey), alternate placing a stone of their colour in the grid. A 

stone is placed by choosing a column. The stone then falls to the lowest spot in the grid that does not contain 

another stone. 

 

  
A first move (by Red) A second move (by Yellow) 
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A third move (by Red) A fourth move (by Yellow) 

 

If a player is able to connect four of their stone either vertically, horizontally, or diagonally, they have won. 

If the whole board is filled with no four connected stones, then the game is a draw. 

 

  
Yellow has four (diagonally) connected stones. She has won. The board is full and neither player has managed to connect four 

of their stones. The game is a draw. 

 

 

Connect four also has variants with differently sized grids and variants where the number of stones that 

need to be connected for a win is different. If n connected stones give a win, then the game is called connect 

n. 

 

Domineering 
Domineering is played on an arrangement of squares, usually a grid, like so: 
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Two players, Left and Right, take turns placing a domino. Left may only place her dominoes in a vertical 

orientation and Right may only place his dominoes in a horizontal orientation. A domino must be placed in 

such a way that is covers exactly two squares and may not be placed (partially) outside the board nor 

(partially) on another domino. 

 

    
A first move (by Left) A second move (by Right) A third move (by Left) A fourth move (by Right) 

 

The winner is the last player that is able to place a domino. 

 

 
It is Right’s turn, but he has no legal move. Thus, Left has won. 

 

Hex 
Hex is played on a rhombic grid of hexagons. The standard is 11x11, but other sizes, such as 13x13 and 

19x19 are also common. A 5x5 version is shown here: 

 

 
 

 

Two players, Black (dark grey) and White (light grey), take turns colouring an empty hexagon (hex) in their 

colour. Each player colours exactly one hex.  
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A first move (by Black) A second move (by White) 

  
A third move (by Black) A fourth move (by White) 

 

 

Each player has two opposite sides of the board coloured in their colour. A player wins if they manage to 

connect both of their sides of the board by a linkage of neighbouring hexes of their colour. 

 

 
White has connected their sides with a chain of white hexes and has won. 

 

Nim 
A game of Nim is played with counters. These counters can be stones, coins, match sticks, etc. Heaps (or 

piles) are made from some number of counters. The number of counters in each heap may differ. 

Here is an example of a starting position of a game of Nim, where the counters are rectangles, and the heaps 

are marked with numbers. 

 

 
 

Two players alternate moves. A move consists of taking at least one (with no maximum) counter from one 

of the heaps.  
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The game continues until no counters are left. The player to take the last counter (or the last heap) is the 

winner.  

 

A full game of Nim 

    
 Player 1 removes 5 counters 

from heap 2. 
Player 2 removes 3 counters 
from heap 3. 

Player 1 removes 1 counter 
from heap 1. 

    
Player 2 removes 1 counter 
from heap 4. 

Player 1 removes 2 counters 
from heap 2. 

Player 2 removes 1 counter 
from heap 1. 

Player 1 removes the last 
counter and wins. 

 

 

Red-Blue Hackenbush 
Red-Blue Hackenbush is played on a piece of paper, a white board, a chalkboard, etc. A thick horizontal black 

line is the ground, on which a picture made of red (light grey) and blue (dark grey) lines is drawn. A game 

of Red-Blue Hackenbush may look like this: 

 

 
 

 

Two players, Left and Right, take turns erasing lines. On Left’s turn, they must erase any one blue line. On 

Right’s turn, they must erase any one red line. If, after a line is erased, one or more lines are not connected 

to the ground (they are floating), then those are erased also. 

Note: the ground cannot be erased. 

 

The last player to erase a line, is the winner. 

 

A full game of Red-Blue Hackenbush 
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In the position above, Right removed the bottom line of the “tree” 
on the left. Because this disconnected the lines on it from the 
ground, they were removed too. 

  
 It is Right to move, but he cannot. Thus, Left has won. 

 


